Cybernetics and Art: Cultural Convergence in the 1960s

Edward A. Shanken

In Bruce Clarke and Linda Dalrymple Henderson, Eds. From Energy to Information. (Palo Alto: Stanford University Press, 2002): 155-77. This draft may vary slightly from the final printed publication.

Hungarian-born artist Nicolas Schöffer created his first cybernetic sculptures CYSP 0 and CYSP I (the titles of which combined the first two letters of “cybernetic” and “spatio-dynamique”) in 1956 (Plate 1). In 1958, scientist Abraham Moles published Théorie de l’Information et Perception Esthétique, which outlined “the aesthetic conditions for channeling media.” Curator Jasia Reichardt’s exhibition Cybernetic Serendipity popularized the idea of joining cybernetics with art, opening at the ICA in London in 1968, and travelling to Washington, DC and San Francisco between 1969-70. Not surprisingly, much artistic research on cybernetics had transpired between Schöffer’s initial experiments of the mid-1950s and Reichardt’s landmark exhibition over a decade later. Art historian Jack Burnham noted that these inquiries into the aesthetic implications of cybernetics took place primarily in Europe, whereas the United States lagged behind by “five or ten years.” Of the cultural attitudes and ideals that cybernetics embodied at that time in Britain, art historian David Mellor has written,

A dream of technical control and of instant information conveyed at unthought-of velocities haunted Sixties culture.

The wired, electronic outlines of a cybernetic society became apparent to the visual imagination—an immediate future ... drastically modernized by the impact of computer science. It was a technologically utopian structure of feeling, positivistic, and “scientistic.”

The evidence of such sentiments could be observed in British painting of the 1960s, especially by a group of artists associated with Roy Ascott and the Ealing College of Art such as Bernard Cohen, R.B. Kitaj, and Steve Willats. Similarly, art historian Diane Kirkpatrick has suggested that Eduardo Paolozzi’s collage techniques of the early 1950s “embodied the spirit of various total systems,” which may possibly have been “partially stimulated by the cross-disciplinary investigations connected with the new field of cybernetics.”

Cybernetics offered these and other European artists a scientific model for constructing a system of visual signs and relationships, which they attempted to achieve by utilizing diagrammatic and interactive elements to create works that functioned as information systems.

This essay begins with a general overview on the origin and meaning of cybernetics, and then proceeds to examine the convergence of cybernetics with aesthetics, paying particular attention to connections between the scientific paradigm and several distinct tendencies in post-WWII experimental art that emerged independently of it. These complementarities are crucial in explaining not only why it was even possible for art to accommodate cybernetics, but why artists utilized cybernetics in particular ways.
The discussion focuses on the artistic practice, art pedagogy, and theoretical writings of British artist Roy Ascott. In 1968, Ascott rightly described himself as “the artist responsible for first introducing cybernetic theory into art education [in Britain] and for having disseminated the concept of a cybernetic vision in art through various art and scientific journals.” True to his “cybernetic vision,” Ascott conceived of these various aspects of his praxis as interrelated components of a larger system comprising his total behavior as an artist. The conceptual continuities that run through his work as an artist, teacher, and theorist offer unique insights into the impact of cybernetics, not only on Ascott’s oeuvre, but on art in general. The intersection of cybernetics and art provides access, moreover, into a richly textured convergence of cultural ideas and beliefs in the 1960s.

The Origin and Meaning of Cybernetics

The term “cybernetics” was originally coined by French mathematician and physicist André Marie Ampère (1775-1836) in reference to political science. In the 1940s, American mathematician Norbert Wiener, generally acknowledged as the founder of the science of cybernetics, recoined the term from the Greek word κυβερνήτης or “steersman”—the same root of the English word “governor.” According to Wiener, cybernetics developed a scientific method using probability theory to regulate the transmission and feedback of information as a means of controlling and automating the behavior of mechanical and biological systems. Cybernetics also drew parallels between the ways that machines, such as computers, and the human brain process and communicate information. W. Ross Ashby’s Design for a Brain (1952) and F. H. George’s The Brain as Computer (1961) were important works in this regard and suggest the early alliance between cybernetics, information theory, and artificial intelligence.

Emerging concurrently with the development of cybernetics, the closely related field of information theory was also concerned with the behavior of communication systems, and in particular, the accuracy with which source information can be encoded, transmitted, received, and decoded. In general, the theory pertained to messages occurring in standard communications media, such as radio, telephone, or television, and the signals involved in computers, servomechanisms, and other data-processing devices. The theory could also be applied to the signals appearing in the neural networks of humans and other animals. With regard to cybernetics, information theory offered models for explaining certain aspects of how messages flow through feedback loops. A feedback loop enabled individual components of a system to dynamically communicate information back and forth. Wiener envisioned cybernetics as offering a method for regulating the flow of information though feedback loops between various interrelated components in order to predict and control the behavior of the whole system. Cybernetics could facilitate automation by enabling a system to become self-regulating and therefore maintain a state of operational equilibrium. In Europe and
North America, the concept of “feedback” became a pervasive trope of the 1960s, entering into popular parlance as a common term for verbal exchange of ideas (“I want your feedback”), and, as will be discussed, becoming incorporated into pop music and experimental art via the feedback of musical instruments and video cameras.

To summarize, cybernetics brings together several related propositions: 1) phenomena are fundamentally contingent; 2) the behavior of a system can be determined probabilistically; 3) with regard to the transfer of information, animals and machines function in quite similar ways, so a unified theory of this process can be articulated; and 4) by regulating the transfer of information, the behavior of humans and machines can be automated and controlled. Cybernetics makes a fundamental shift away from the attempt to analyze the behavior of either machines or humans as independent and absolute phenomena. The focus of inquiry becomes the dynamic and contingent processes by which the transfer of information amongst machines and/or humans alters behavior at the systems level.

Art, Cybernetics, and the Aesthetics of Interactive Systems

By Ascott’s own account, he discovered the writings of Wiener, George, and Ashby in 1961, just before taking a position his mentor Victor Pasmore had secured for him as Head of Foundation Studies at Ealing College of Art. The work of these and other authors writing about cybernetics and related fields captivated his imagination, catalyzing what Ascott described as an Archimedean “‘Eureka experience’—a visionary flash of insight in which I saw something whole, complete, and entire.”

Ascott’s insight was a sweeping yet subtle vision of the potential artistic applications of the cybernetic principles of information, feedback, and systems.

With regard to the relationship he perceived between cybernetics and art, Ascott noted in retrospect that the “recognition that art was located in an interactive system rather than residing in a material object . . . provid[ed] a discipline as central to an art of interactivity as anatomy and perspective had been to the renaissance vision.” In the 1960s, he did not use the term “interactivity” (a term that in the 1990s has become jargon for computer-multimedia). However, Ascott frequently used the words “interact,” “interaction,” “participate” and “participatory” to express the idea of multiple levels of interrelations among artist, artwork, and audience as constituents of a cybernetic system. This interactive quality underlying Ascott’s early vision of cybernetic art was founded on the concepts of process, behavior, and system. As he wrote in his 1967 manifesto *Behaviourables and Futuribles*, “When art is a form of behaviour, software predominates over hardware in the creative sphere. Process replaces product in importance, just as system supersedes structure.”

Moving away from the notion of art as constituted in autonomous objects, Ascott redefined art as a cybernetic system comprised of a network of feedback loops. He conceived of art as but one member in a family of interconnected feedback loops in the
cultural sphere, and he thought of culture as itself just one set of processes in a larger network of social relations. In this way, Ascott integrated cybernetics into aesthetics to theorize the relationship between art and society in terms of the interactive flow of information and behavior through a network of interconnected processes and systems.

But Ascott’s concern with enabling viewers to participate in the process of composing a picture predates his awareness of cybernetics. For example, in 1960 he created his first Change Paintings, six Plexiglas (“perspex” is the British term) panels, each containing an abstract shape rendered in a painterly gesture. Each shape, according to the artist, was like a seed intended to capture the potential of myriad possibilities of a much larger idea distilled to its essence. These “ultimate shapes,” as he has called them, were set in various layers of a grooved frame that permitted each panel to slide horizontally along its length. The variable formal structure of his Change Paintings made possible a multiplicity of compositional states (Plate 2).

It was Ascott’s intention that viewers could more actively participate in the creative process by determining the state of the artwork according to their subjective aesthetic sensibilities at a particular moment. Thus, both the work itself, and one’s experience of it, unfolded over the duration of interacting with it. Each work depended on an exchange of information between the artist, the viewer, and the object. The ongoing, cumulative result of these interactions represented the potential of the work’s infinite number of compositional possibilities. While the principles of contingency, feedback, and control could be used to explain Ascott’s Change Paintings, the artist was not yet familiar with these concepts within the context of cybernetics. Nonetheless Ascott’s theoretical and artistic concerns resulted in the expression of related ideas in visual form, indicating how scientific ideas and artistic ideas are complementary, and can arise independently from many common sources of human knowledge and social exigency.

Since it predates his awareness of cybernetics, Ascott’s initial research into the durational aspects of art, and his pursuit of audience participation and interactivity, must be understood in other contexts. A number of mid-century contemporary artists in Britain participated in the exploration of art’s temporal dimension. Mellor has observed that “the timetable of the performed painting/action became a key document [for artists] and the notion of the art work as notated event in time underlay John Latham’s first theorizing of the ‘event-structure’” around 1954. Art historian Kristine Stiles has traced one of the roots of this tendency to the performative aspects of informel painting first demonstrated to a large audience by Georges Mathieu in Paris in 1954, and later in London at the ICA in 1956.

Certainly Stiles is correct that the genealogy from gestural abstraction to happenings and to the performative elements of interactive art offers an important source of insight into the growing concern in the 1960s with the temporal dimension of art. Indeed, by
Ascott’s own estimation, the work of the New York school, and Jackson Pollock’s web-like compositions in particular, greatly influenced his own thinking about art. While the abstract expressionist ethos of unbridled expression of the unconscious was too romantic for Ascott’s temperament, Pollock’s physical, corporeal involvement in and around his paintings established an important model for experimenting with the process by which art comes into being. The interconnecting skeins of Pollock’s dripped and poured paint came to suggest, for the younger artist, ways in which art functions metaphorically within connective networks of meaning. While the abstract expressionist ethos of unbridled expression of the unconscious was too romantic for Ascott’s temperament, Pollock’s physical, corporeal involvement in and around his paintings established an important model for experimenting with the process by which art comes into being. The interconnecting skeins of Pollock’s dripped and poured paint came to suggest, for the younger artist, ways in which art functions metaphorically within connective networks of meaning. Moreover, Pollock’s decision to take the canvas off the easel and paint it on the ground altered the physical working relationship between artist and artwork from a vertical plane to a horizontal one, in which the artist looked down on the canvas from a bird’s eye view. In so doing, this method of working contributed to the reconceptualization of painting from a “window on the world” to a cosmological map of physical and metaphysical forces.

In this regard, Ascott was also drawn to the conceptual orientation of Marcel Duchamp’s diagrammatic works. 3 Standard Stoppages (1913-4), for example, also mapped a horizontal relationship between artist and artwork. Moreover, it exemplified the method of chance operations, which Ascott would employ in works like Bigelow (1964). Duchamp’s Network of Stoppages (1914), which can be interpreted as a visual precursor to the decision-trees of systems theory, offered a model for the interconnected semantic networks of Ascott’s transparent Diagram Boxes (c. 1962-3, see plate 3). Similarly, the Large Glass (1915-23) was interpreted by Jack Burnham as Duchamp’s visual map of the structural foundations of western art history and the internal semiological functioning of art objects through a diagrammatic and transparent form. Though widely disputed, Burnham’s interpretation of the Large Glass is particularly relevant with respect to Ascott’s work. For Ascott also drew on mystical sources and used cartographic imagery and transparent media to examine the semiological function of art, a subject that will be addressed below. Further, the transparency of the Large Glass—always including the viewer’s changing point of view and context—has been interpreted by Ascott as a precursor to the interactive interfaces of digital computer networks, which are always comprised of multiple users and perspectives.

Also predating Ascott’s awareness of cybernetics, D’Arcy Wentworth Thompson’s theories of biomorphology and Henri Bergson’s vitalist philosophy deeply impacted the artist’s concern with the temporal aspects of art as a durational process of organic unfolding. For example, the “seeds” or “ultimate shapes” with which Ascott sought to capture the essence of potentiality in his Change Paintings, may be related to Thompson’s ideas of organic development and Bergson’s concept of élan vital, or the vital impetus the philosopher theorized as the animating factor essential to life. Similarly, the durational and mutable aspects of these works were indebted to Bergson’s concept of durée, which theorized a form of
consciousness that conjoined past, present, and future, dissolving the
diachronic appearance of sequential time, and providing instead a
unified experience of the synchronic relatedness of continuous
change. In this light, Ascott’s interactive visual constructions of the
early 1960s can be interpreted as models in which potential forms
could creatively evolve, revealing the multiple stages of their nature
(as in the growth of a biological organism), over the duration of their
changing compositional states. Ascott conceived of the infinite
combination of these compositional transformations as comprising an
aesthetic unity, a metaconsciousness or Bergsonian durée, including all
possible states in the past, present, and future.

Art and Cybernetics: Convergences and Complementarities

Although rooted in a combination of earlier aesthetic,
biological, and philosophical models, Ascott’s Change Paintings, which
varied as the result of the systematic feedback of information between
viewer and artwork, can be seen as visual analogs to the cybernetic
theories that the artist would later adopt. Yet, one would be hard-
pressed to identify a tenable link between cybernetics on one hand,
and Pollock, Duchamp, Thompson, and Bergson on the other. Since
artists notoriously draw on an enormously wide range of sources,
mapping cybernetics onto the history of art is an imprecise science at
best. Indeed, many twentieth-century artists experimented with
process, kinetics, interactivity, audience-participation, duration, and
environment, and their work can be explained without recourse to
cybernetics, but rather by relying primarily on aesthetic tendencies
that became increasingly central to artistic practice in the post-WWII
period.

An historical approach offers much insight into the aesthetic
context in which cybernetics gained currency amongst artists, like
Ascott, who were experimenting with the ideas of duration and
interaction in the 1960s. While cybernetics offered a flexible theory
that was adaptable to a wide range of applications in the sciences,
social sciences, and humanities, it might be argued that in the absence
of a complementary aesthetic context, there would have been no
common ground for the accommodation of cybernetics to artistic
concerns. It is safe to say that the particular ways in which that
scientific theory was utilized by artists depended, in part, on extant
correspondences between aesthetics and cybernetics. The following
discussion identifies some of the art historical sources for the
convergences and complementarities between aesthetics and
cybernetics.

If the Impressionists were the first group of artists to
systematically explore the durational and perceptual limits of art, the
Cubists, reinforced by Bergson’s theory of durée, developed a formal
language dissolving perspectival conventions and utilizing found
objects that represented wrinkles in time and space.18 Early
twentieth-century experiments with putting visual form into actual
motion included Duchamp’s Bicycle Wheel (1913) and Naum Gabo’s
Kinetic Construction (1920). Gabo’s work in particular, which produced
a virtual volume only when activated, made motion an intrinsic quality of the art object, further emphasizing the aspect of time. By the 1950s, experimentation with duration and motion by artists such as Schöffer, Jean Tinguely, Len Lye and Takis gave rise to the broad, international movement known as Kinetic Art. Schöffer’s CYSP I, for example, was programmed to respond electronically to its environment, actively involving the viewer in the temporal experience of the work. In this work, Schöffer drew on aesthetic ideas that had been percolating for three-quarters of a century and intentionally merged them with the relatively new field of cybernetics. The interactive spirit of Kinetic Art gave birth in the 1960s to Nouvelle Tendance collectives working with diverse media to explore various aspects of Kinetic Art and audience participation, groups such as Groupe Recherche d’Art Visuel (GRAV) in Paris and ZERO in Germany. Taking audience participation in the direction of political action, after 1957 the Situationist International theory of détournement offered a strategy for how artists might alter pre-existing aesthetic and social circumstances in order to reconstruct the conditions of everyday life.

In the early 1950s the aesthetic strategy of engaging the audience more directly in a work became an important compositional strategy in Western concert music, which, through cross-fertilization, played a major role in the development of participatory art in the U.S. Again, while not directly related to cybernetics, these artistic pursuits can be interpreted loosely as an independent manifestation of the aesthetic concern with the regulation of a system through the feedback of information amongst its elements. The most prominent example of this tendency premiered in 1952, American composer John Cage’s 4’33”. Written for piano but having no notes, this piece invoked the ambient sounds of the environment (including the listener’s own breathing, a neighbor’s cough, the crumpling of a candy wrapper) as integral to its content and form. Cage’s lectures at the New School influenced numerous visual artists, notably Allan Kaprow, the founder of happenings, and George Brecht, whose “event scores” of the late 1950s anticipated Fluxus performance.

Also related to developments in experimental music, the visual effects of electronic feedback became a focus of artistic research in the late 1960s when video equipment first reached the consumer market. By the mid-1960s, audio feedback and the use of tape loops, sound synthesis, and computer-generated composition had became widespread in experimental music, following the pioneering work of composers like Cage, Lejaren Hiller, Karlheinz Stockhausen, and Iannis Xenakis in the 1950s. Perhaps most emblematically, the feedback of Jimi Hendrix’s screaming electric guitar at Woodstock (1966) appropriated the National Anthem as a counter-culture battlecry. The use of electronic feedback in visual art includes Les Levine’s interactive video installations such as Iris (1968) and Contact: A Cybernetic Sculpture (1969), in which video cameras captured various images of viewers, which were fed-back, often with time-delays or other distortions, onto a bank of monitors.
A similar approach was taken in *Wipe Cycle* (1969) by Frank Gillette and Ira Schneider. As Levine noted, *Iris* “turns the viewer into information. . . *Contact* is a system that synthesizes man with his technology . . . the people are the software.” Schneider amplified this view of interactive video installation, stating that, “The most important function... was to integrate the audience into the information,” and Gillette added that it “rearranged one’s experience of information reception.”

Woody and Steina Vasulka also experimented with a wide variety of feedback techniques, using all manner and combination of audio and video signals to generate electronic feedback in their respective or corresponding media. “We look at video feedback as electronic art material... It’s the clay, it’s the air, it’s the energy, it’s the stone... it’s the raw material that you... build an image with...”

In these ways, twentieth-century experimental art tended to focus on temporality, to put art into motion, to utilize the concept of feedback, and to invoke interaction with the viewer. In general, such work emphasized the artistic process as opposed to the product and accentuated the environment or context (especially the social context) as opposed to conventional content. These tendencies helped to form the aesthetic context in which cybernetics converged with art.

Early Alliances and Further Convergences

Ascott’s 1963 solo exhibition, *Diagram Boxes & Analogue Structures*, at the Molton Gallery in London, offers an early example of how the artist combined cybernetics and art. By this time, Ascott had assimilated cybernetics as a primary theoretical foundation for merging Bergsonian ideas with Constructivism and Kinetic Art, while at the same time employing the use of diagrams and text as a formal element. In so doing, he developed an original way of applying artistic and scientific theories to generate visual form. While his precursors’ work implied the presence of force and movement, Ascott sought to include actual force and movement. Like Schöffer’s “spatiodynamic” sculptures of the early 1950s (which were also based on Constructivist principles), Ascott’s work added a durational, kinetic element, further extending this lineage into a temporal dimension.

Ascott’s statement in the exhibition catalog exemplifies how cybernetics was part of a complex amalgam of aesthetic, philosophical, and scientific ideas which led to his creation of interactive, changeable works of art: “Cybernetics has provided me with a starting point from which observations of the world can be made. There are other points of departure: the need to find patterns of connections in events and sets of objects; the need to make ideas solid . . . but interfusable; an awareness of change as fundamental to our experience of reality; the intention to make movement a subtle but essential part of an artifact.” In this passage, the artist explicitly states that cybernetics provided a conceptual framework for interpreting phenomena artistically. His recognition of “change” as fundamental to “the experience of reality” is an idea akin to Bergson’s
concept of durée. The “need to make ideas solid . . . but interfusable”
suggests the modular, concrete aesthetic of constructivism. The
“intention to make movement a subtle but essential part of an
artifact” shares concerns in common with earlier and synchronous
developments in contemporary art internationally, which sought to
vitalize art through movement, enactment, and performative
elements. Ultimately, Ascott would extend the search for “patterns
of connections” to draw parallels between the forms of art and the
forms of science: for example, the “ultimate shapes” in the Change
Paintings and the analog wave patterns that represent and carry
information in communications systems.

Indeed, Ascott developed a taxonomy of “analog forms”
which, like waveforms, were meant symbolically to convey universal
qualities, potentials, intentions, and strategies. In works like Video
Roget (1962) a moveable calibrator at the center of the piece enabled
the relationships among the analog forms (and categories of meaning)
to be varied by the user. On the page preceding the reproduction of
Video Roget in the exhibition catalog, the artist provided a related
diagram on tracing paper, entitled Thesaurus (1963). The reader could
interact with the Thesaurus by superimposing it on the image of Video
Roget to reveal suggested meanings of the individual analog forms and
the possible feedback loops among them (Plate 5).

Ascott extended the parallel he drew between the forms of
art and science to include non-western systems of knowledge as well.
The phrase “To programme a programming programme” appears on
a 1963 sketch for the 1964 construction For Kamynin, Lyubimskii and
Shura-Bura, dedicated to the Russian computer scientists. Yet despite
the scientific jargon, in this work and others from the 1960s and
1970s, Ascott visually suggested equivalences between I Ching
hexagrams, binary notation of digital computers, scatterplots of
quantum probability, wave frequencies, and biomorphic shapes (Plate
6). Two years later Korean-born artist Nam June Paik drew a striking
parallel between Buddhism and cybernetics:

> Cybernetic art is very important, but art for cybernated life is
> more important, and the latter need not be cybernated. . . .
> Cybernetics, the science of pure relations, or relationship
> itself, has its origin in karma. . . .
> The Buddhists also say
> Karma is samsara
> Relationship is metempsychosis

In a similar way, Ascott's theoretical-artistic propositions about the
future combined recent advances in science and technology with
ancient systems of knowledge, and did so in a non-hierarchical
manner. Like an appropriate response to a koan, an apparent
paradox that cannot be resolved by logical formula, Ascott's
amalgamation of science, art, and mysticism never sought an
unequivocal resolution of these seemingly irreconcilable systems of
knowledge. Rather, having intuited the paradoxical nature of
knowledge, he attempted to better understand the underlying systems
by which meaning is constructed.

Cybernetic Systems, Semantic Systems, and Their Discontents

In works like Video Roget (Thesaurus) Ascott equated visual
forms (by which meaning is formally derived) with semantic systems (by which meaning is derived by taxonomic relationships) by drawing both into the principle of contingency that Wiener attributed to the operations of cybernetics. Moreover, in a two-page diagram (drawn like an electric circuit) in his 1963 exhibition catalog, Ascott wrote, “This Thesaurus is a statement of my intention to use any assembly of diagrammatic and iconographic forms within a given construct as seems necessary” (Plate 7). By explicitly stating his intention to use text in his “constructs”—to use text in and as art—Ascott strategically expanded the range of what counted as art to include diagrammatic, iconographic, and textual forms as inter-related parts of a cybernetic art system. The universe of potential meanings of such works was to be derived taxonomically and discursively through multi-layered processes in which the flow of information between artists and the objects they make, the semantic systems which govern the reception of works of art, and the actual responses of viewers were all mutually contingent.

Ascott’s concern with the semantic complexities of visual representation and the relationship between art and text in the mid-1960s presaged the Conceptual Art practice of American Joseph Kosuth and the British collective Art & Language in the late 1960s. Indeed, their work shared Ascott’s interest in the taxonomic relations through which semantic meaning is—or fails to be—generated. Art & Language attempted to subvert the logic of art objects through the use of textual interventions, in order to interrogate what British art historian Charles Harrison has referred to as the modernist “beholder discourse.” To that end, Mel Ramsden’s Elements of an Incomplete Map (1968), for example, incorporated four annotated volumes of Roget’s Thesaurus. Like Ascott’s Video Roget (Thesaurus) (1963), Ramsden’s work suggested equivalences between the way in which language signifies meaning in an interconnected rhetorical system like a thesaurus, and the way in which form signifies meaning in an interconnected visual system. Ascott’s cybernetic art employed the further strategy of creating an interactive situation that undermined conventional subject-object relationships between art and audience, thereby raising similar questions about spectatorship.

But whereas Ascott genuinely believed in cybernetics as a “practical and intellectual tool” for the creation of art, the members of Art & Language were much more skeptical, and applied scientific principles to art in a tongue-in-cheek manner, suggesting a parallel between the dogma of cybernetics and the dogma of modernist aesthetics. For example, in Key to 22 Predicates: The French Army (1967), Terry Atkinson and Michael Baldwin offered a key to abbreviations for the French Army (FA), the Collection of Men and Machines (CMM), and the Group of Regiments (GR). Using logic reminiscent of Lewis Carroll, the artists then described a variety of relationships amongst these elements as part of a system (of gibberish): “The FA is regarded as the same CMM as the GR and the GR is the same CMM as (e.g.) ‘a new order’ FA (e.g. morphologically a member of another class of objects): by transitivity the FA is the same
This ironic description—through a looking glass, so to speak—mocked the manner of cybernetic explanations. It reduced to absurdity the systematization of relationships between individuals, groups, and institutions that Ascott employed in defining his theory of a Cybernetic Art Matrix in the essay, Behaviorist Art and the Cybernetic Vision (1966-67). Similarly, in Harold Hurrell's artwork, The Cybernetic Art Work that Nobody Broke (1969), a spurious computer program for interactively generating color refused to allow the user to interact beyond the rigid banality of binary input. If the user input a number other than 0 or 1, the program proffered the message: “YOU HAVE NOTHING, OBEY INSTRUCTIONS!” If the user input a non-number, The Cybernetic Art Work That Nobody Broke told him/her that there was an “ERROR AT STEP 3.2.” (Plate 8).

Harrison has interpreted these experiments as “flailing about—products of the search for practical and intellectual tools which had not already been compromised and rendered euphemistic in Modernist use.” But they may be interpreted equally as ironic critiques of artists’ failure to address the incommensurability of science and art, and as parodies of the rigid confines within which claims for interactive participation might transpire. Such insights offered a valuable critical perspective on Ascott’s cybernetic art theory and practice (and that of other similar-minded artists.) At the same time, the resistance of Art & Language to the purposeful conjunction of art and technology can be interpreted as a reactionary manifestation of the collective’s rejection of media-based art.

Cybernetics and Art Pedagogy

Ascott’s theories of art and cybernetics also directly informed his creation of a method for teaching art based on the same principles—a cybernetic pedagogy. In 1964, he described the continuum between his work in the studio and his work in the classroom, which he felt complemented each other: “In trying to clarify the relationship between art, science and behaviour, I have found myself able to become involved in a teaching situation without compromising my work. The two activities, creative and pedagogic, interact, each feeding back to the other. Both, I believe, are enriched.” It is no coincidence that he used the language of cybernetics to suggest how his art practice and pedagogy interacted, “each feeding back to the other,” as part of a mutually reinforcing system. As artist and critic Eddie Wolfram wrote in 1968, “I do not know of any other artist/teacher who projects such a high incident of integration between his teaching ideas and the art-hardware that he makes.”

In the classroom, cybernetics offered a clear model for reconceptualizing art and education—and their roles in a larger social system—by suggesting the organization of art education curricula in terms of a behavioral system of feedback and control. The course of study Ascott implemented at Ealing beginning in 1961 focused on these cybernetic principles. Students collaborated as elements of a
system that regulated their artistic behavior as an integrated whole. For example, as Ascott himself explained, forming groups of six, each student would be “set the task of acquiring and acting out . . . a totally new personality, which is to be narrowly limited and largely the converse of what is considered to be their normal ‘selves.” A student’s preconceptions about his or her personality, strengths and weaknesses as an artist, and about the nature of art itself, were not only thrown into question, but were actively transcended through the forced adoption of different behavioral characteristics and a rethinking of art-making and art as process and system. Because their individual behaviors had to be integrated into a coherent group process, each member would be “of necessity interdependent and highly conscious of each other’s capabilities and limitations” in order to accomplish together the “set goal of producing . . . an ordered entity.” In this way, students learned about the principles of cybernetics as applied to art through their own behavioral interactions as part of a cybernetic art system in which the controlled exchange of information organized the overall structure.

British composer Brian Eno, who was a student of Ascott’s at Ipswich in 1964-66, offered a first-hand account of his teacher’s pedagogical methods, and their impact on him:

One procedure employed by Ascott and his staff was the “mindmap.” In this project each student had to invent a game that would test and evaluate the responses of the people who played it. All the students then played all of the games, and the results for each student were compiled in the form of a chart—or mindmap. The mindmap showed how a student tended to behave in the company of other students and how he reacted to novel situations. In the next project each student produced another mindmap for himself that was the exact opposite of the original. For the remainder of the term he had to behave according to this alternative vision of himself.

Eno further noted: “For everybody concerned this . . . extraordinary experience . . . was instrumental in modifying and expanding the range of interaction each student was capable of.”

Moreover, in Ascott’s Groundcourse, students were introduced to other experimental artists and intellectuals in a variety of disciplines. One powerful example of the influence of this guest lecture program is the impact on the young British musician Peter Townshend of artist and holocaust survivor Gustav Metzger’s presentation on destruction in art. Townshend, who would later form the rock band, *The Who*, has credited Metzger’s theory with giving him the idea to destroy musical instruments onstage at *Who* concert performances—a performative gesture that visually symbolized the anger and rebellion of a generation. Stiles has theorized this transference of ideas from Metzger to Townshend as an example of the process by which the most advanced conceptual developments in experimental visual art are transmitted in insidious ways to become incorporated into popular culture. Such a theory of the operations of art in culture offers a model for understanding how Ascott’s cybernetic conception of art entered into the popular imagination.
As with the relationship between his artistic and pedagogical practices, so Ascott has identified substantial systematic feedback (in the cybernetic sense of the term) between his work in aesthetic theory and his work as an artist and teacher. Ascott’s essay, “Behaviourist Art and the Cybernetic Vision” (1966-67) exemplifies his theories on, and ambitions for, the application of cybernetics to art. As his theoretical point of departure, Ascott joined the principles of cybernetics with emerging theories of telecommunications networks. In opposition to the conventional discourses on the subject-object relationship between viewer and artwork, Ascott declared the objectives of art to be the processes of artistic creation and reception.

Process became an increasingly central area of artistic inquiry in the late 1960’s and 1970’s, laying the conceptual groundwork for the popular use of interactive electronic media, which would follow. As Stiles has noted:

In their writings and works, many artists became increasingly aware of how process connects the superficially independent aspects and objects of life to an interdependent, interconnected network of organic systems, cultural institutions, and human practices. However awkwardly these artists’ works anticipated the end of a century that witnessed the advent of massive electronic communication systems like the Internet, their research was vital in visualizing process as a means to align art with the future.

For his part, Ascott theorized the close relationship between the current aesthetic concern with process and the possibilities that cybernetics, computers, and telecommunications held for the future of art and culture.

Ascott’s goal in “Behaviourist Art and the Cybernetic Vision” was ambitious: the theorization of a cybernetic system for educating society. In this text, he proposed a new paradigm of art which “differs radically from [the determinism of] any previous era” (25) and would be distinguished by its emphasis on ambiguity, mutability, feedback, and especially behavior. These visionary prospects were incorporated into what he called the Cybernetic Art Matrix (CAM), an elaborate, integrated system for enhancing his cybernetic vision throughout culture, that he devised in 1966. CAM was conceived of as an interrelated system of feedback loops designed to serve professional artists and the general public. It established a model in which the flow of information and services, as well as the behavior of individuals, groups, and society, was self-regulating throughout the whole. CAM was intended to provide a variety of functions, such as facilitating interdisciplinary collaboration between geographically remote artists and scientists, providing a pragmatic art education curriculum for the young, and enriching the lives of “the new leisured class” by enhancing creative behavior and providing amenities and modes of aesthetic play. Ascott used symbolic formulae and numerous acronyms to identify particular niches within CAM, and to explain methodically how the various layers were connected within the system.
Ascott envisioned technology as playing a vital role in implementing his cybernetic vision, as a means both to enhance human creativity on the individual level, as well as to enable collaborative interaction between participants from diverse fields and geographic locations. For example, the artist conceived of the computer as “a tool for the mind, an instrument for the magnification of thought, potentially an intelligence amplifier. . . . The interaction of artifact and computer in the context of the behavioral structure, is equally foreseeable. . . . The computer may be linked to an artwork and the artwork may in some sense be a computer” (28-29). In this description, largely informed by the ideas H. Ross Ashby described in “Design for an Intelligence Amplifier” (1956), Ascott’s conception of the computer was not simply as a tool for generating images, but rather as an integral component in an interactive, behavioral system.41

Ascott’s artistic concern with the behavioral implications of cybernetics gradually moved away from the localized environments of his Change Paintings and other kinetic constructions, and expanded into the possibilities of geographically remote interaction. Inspired in part by the global village prophesied by Canadian media theorist Marshall McLuhan, Ascott envisioned the emergence of art created interactively with computers, and through interdisciplinary collaborations via telecommunications networks: “instant person to person contact would support specialized creative work. . . . An artist could be brought right into the working studio of other artists . . . however far apart in the world . . . they may separately be located.

By means of holography or a visual telex, instant transmission of facsimiles of their artwork could be effected . . . Distinguished minds in all fields of art and science could be contacted and linked.” What Ascott theorized in 1968 can be described in contemporary language as interactive multimedia in cyberspace. These ideas have become cornerstones of the communications, electronics, and entertainment industries’ development and marketing of online services, computer games, and a vast array of software and peripherals in the 1990s. Here is another example in which conceptual ideas that were theorized in the spaces of experimental art later became popularized and commercialized in other modes of cultural production.

The Cybernetic Sixties and Its Legacy

Cybernetics had a decisive impact on art. That impact was itself mediated by the aesthetic context that coincided with the scientific theory’s emergence in the late 1940s, and by the complementarities between cybernetics and central tendencies of twentieth-century experimental art. Given the emphasis of post-WWII art on the concepts of process, system, environment, and audience participation, cybernetics was able to gain artistic currency as a theoretical model for articulating the systematic relationships and processes among feedback loops including the artist, artwork, audience, and environment. In the absence of that common ground, it is possible that cybernetics might not have been accommodated to art, or that it would have been accommodated in a very different way.
Roy Ascott’s early Change Paintings exemplify how ideas derived from aesthetics, biology, and philosophy could result in the creation of a visual analog to cybernetics, even though the artist was not yet aware of that scientific theory. More generally, this example shows how various fields and disciplines can independently produce homologous forms in response to a more or less common set of cultural exigencies. Ascott’s work as an artist, teacher, and theorist also indicates how the flexibility of cybernetics allowed that theory to be applied to a wide range of social contexts. However, this programmatic quality in the application of cybernetics gives reason for pause: for given that related ideas had already been incorporated into mid-century aesthetics, artists had a wealth of ideas from which to derive and develop formal strategies, pedagogical methods and theoretical exegeses. In other words, the accomplishments that were made in visual art under the banner of cybernetics might very well have been achieved in the absence of that scientific model.

Cybernetics, however, possessed the authority of science, and for better or worse, Ascott brought that seal of approval to bear on his work. Ironically, while Ascott’s CAM theory adopted a rigid cybernetic language and organizational schema, his creative imagination was far from limited to the domain of scientifically provable facts and formulas, but incorporated a wide array of ideas from diverse systems of knowledge. As a result, cybernetics was transformed in his hands from science into art.

Cybernetics also offers a model for explaining how ideas that emerged in the domain of experimental art eventually spread into culture in general. Ascott theorized this transference in terms of a series of interconnected feedback loops, such that information related to the behavior of each element is shared and exchanged with the others, regulating the state of the system as a whole. Such is the case with Ascott’s own theorization in 1966 of interdisciplinary collaborations over computer networks, a concept that became the central focus of his theory and practice in 1980, subsequently popularized through web-based multimedia in the 1990s.

In conclusion, Ascott drew on cybernetics to theorize a model of how art could transform culture. He was particularly insistent that cybernetics was no simple prescription for a local remedy to the crisis of modern art, but represented the potential for reordering social values and reformulating what constituted knowledge and being. In 1968 he wrote:

As feedback between persons increases and communications become more rapid and precise, so the creative process no longer culminates in the art work, but extends beyond it deep into the life of each individual. Art is then determined not by the creativity of the artist alone, but by the creative behaviour that his work induces in the spectator, and in society at large. . . . The art of our time tends towards the development of a cybernetic vision, in which feedback, dialogue and involvement in some creative interplay at deep levels of experience are paramount. . . . The cybernetic spirit, more than the method or the applied science, creates a continuum of experience and knowledge which radically reshapes our philosophy, influences our behaviour and extends our thought.42
Here, Ascott staked a passionate and ambitious claim for the significance of art conceived as a cybernetic system. For ultimately he believed that cybernetic art could play an important role in altering human consciousness, and thereby transform the way people think and behave on a social scale. Ascott’s visionary claim is impossible to either prove or disprove. However, by the late 1990s cybernetics has become so inextricably woven into the fabric of the industrialized West that it is difficult to imagine conceiving of phenomena in terms that are not mediated by the principles of feedback and systems.

I would like to thank Kristine Stiles for her intellectual and scholarly guidance, which has helped me transform energy to information. Final preparation of this work was undertaken while the author’s research was supported by a Henry Luce/ACLS Dissertation Fellowship in American Art. This essay is dedicated to the memory of my loving grandparents, Pauline and Benjamin Shanken.

4 Cohen and Kitaj taught with Ascott at Ealing, where Willats was a student.

9 Roy Ascott, Interview with the author, September, 1995, Montreal.

18 In addition to Schöffer and the British artists mentioned above, French artist Jacques Gabriel exhibited the paintings Cybernétique I and Cybernétique II in “Catastrophe,” a group show and happening organized by artist Jean Jacques Lebel and gallerist Raymond Cordier in Paris in 1962. Gabriel’s text published on the poster publicizing the event stated, “L’Art et le Cybernétique, c’est la même chose” (Art and cybernetics are the same thing). As another example, artist Wen-Yeng Tsai’s Cybernetic Sculpture (1969) was comprised of stainless-steel rods which vibrated in response to patterns of light generated by a strobeoscope and to the sound of participants clapping their hands.

22 On the relationship of Schöffer’s spatio-dynamic and cybernetic sculptures to constructivism, see Popper, Kinetic Art, pp. 134-140.

Ibid, p. 52. I am indebted to Charles Harrison for bringing my attention to this and other works by Art & Language regarding the application of cybernetics to art.

Ibid, p. 56.

Ibid, 41. Original emphasis.

Ibid. Currently Ascott is the Director of the Centre for Advanced Inquiry in the Interactive Arts (CAiiA) at the University of Wales, Newport, which he founded in 1994. In the 1995-96 academic year, CAiiA gained accreditation for the world's first Ph.D. program in Interactive Art - a course of study that transpires largely online amongst leading electronic artists participating telematically around the world.

Stiles, "The Destruction in Art Symposium."

Ibid. As Stiles has noted, Metzger organized the *Destruction in Art Symposium*, and Ascott served as a member of the honorary organizing board.

Ascott, Interview with the author, May 25, 1995, Bristol.

In this regard, Ascott noted his admiration for the work of Gustav Metzger, whom he knew in London, and Nicolas Schöffer. Interview with Ascott, May 25, 1995, Bristol.